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Abstract

I investigate the extent to which modern Dynamic Stochastic General Equilibrium
(DSGE) models can produce macroeconomic and labor market dynamics in response
to a financial crisis that are consistent with the experience of the Great Recession.
Using the methods of Boivin and Giannoni (2006) and Kryshko (2011), I estimate two
DSGE models in a data-rich environment. This allows me to examine the dynamics of
economic series not obtainable in traditional DSGE model estimation. I find that neg-
ative financial shocks are associated with longer recoveries in real investment, capital
intensive sectors of the labor market and average unemployment duration when com-
pared to other negative output shocks. These results hold when the decline in output
is normalized across the shocks. The two models estimated in this paper include close
variations of the Smets & Wouters (2003, 2007) New Keynesian model and the FRBNY
(Del Negro et al. 2013) model that augments the Smets & Wouters model with a fi-
nancial accelerator. I find the model with a financial accelerator that is estimated in a
data-rich environment is equipped with better tools to identify the dynamics associated
with the Great Recession and its recovery in regard to core macroeconomic variables
and many labor and financial metrics including the unemployment rate, total number
of employees by sector and business loans.
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1 Introduction

Modern day macroeconomic theory has greatly leaned on structural Dynamic Stochas-

tic General Equilibrium (DSGE) modeling. These models give policymakers a workshop

in which co-movements of aggregate macroeconomic time series can be evaluated over the

business cycle. The Smets and Wouters (2003, 2007) model (SW) in particular is widely

considered the “workhorse” of the DSGE literature. However, Del Negro and Schorfheide

(2012) have found this model to be limited in identifying the financial crisis for most of 2008,

including the 4th quarter of 2008 when the crisis was in full swing. A model that was able

to identify the Great Recession six months earlier than the SW model is a variant of the SW

model with financial frictions (SWFF). The SWFF model introduces a Bernanke, Gertler

and Gilchrist (1999) financial accelerator mechanism and closely follows the entrepreneurial

sector of the DSGE model of Christiano et al. (2010) and the FRBNY model outlined by Del

Negro et al. (2013). Del Negro and Schorfheide (2012) compared the SW and SWFF models

forecasting performance over the past two decades when the models were estimated under a

standard set of seven or eight data series. They found that during the Great Recession the

modified SWFF model was better at forecasting output and inflation when compared to the

original SW model.

Given the construction of traditional DSGE model estimation (DSGE-Reg) economists

are limited to comparing the two models on only a handful of co-movements among these

aggregate series. However, the techniques of Boivin and Giannoni (2006) and Kryshko (2011)

provide an avenue through which DSGE environments can be used to study such series as

the unemployment rate, unemployment duration and employees by sector even when no such

series are directly incorporated into the structural model. The Boivin and Giannoni (2006)

technique (DSGE-DFM) allows DSGE models to be estimated using a large data vector of

macroeconomic time series. The series that are not directly incorporated inside the DSGE

model are allowed to load on economic variables and structural processes that are inside the

DSGE model. The estimated structural parameters and loadings allow me to examine the

dynamic effects of the structural shocks inside the DSGE model as well as the dynamics of

additional data series important to the questions of this paper and the policymaker.
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This method has been most recently used by Gali et al. (2012), Brave et al. (2012)

Justiniano et al. (2013) and Barsky et al. (2014) who have all expanded the observable

vector to improve the identification of unobservable and observable states and thus improve

the estimation of the structural parameters. Gali et al. (2012) and Justiniano et al. (2013)

promotes the use of multiple series for the measurement of wages, while Brave et al. (2012)

and Barsky et al. (2014) uses multiple measures of inflation to estimate their perspective

models. However, these papers used the method to allow for multiple data variables mea-

suring the same model concepts and I will use the methodology to allow a large vector of

macro-financial data to load on all DSGE model states.

In this paper, I estimate both the SW and SWFF models using the DSGE-DFM method.

The macro-financial time series I use to conduct these estimations is a near replica of the

Stock and Watson (2003) dataset used in estimating their Dynamic Factor Model. It in-

cludes labor and financial data series that are usually not utilized in DSGE-Reg estimation.

These include unemployment rates and durations employment by sector, stock price indexes,

housing starts and many price and wage indexes beyond the standard CPI index and GDP

deflator.

This approach allows me to empirically examine the question of why some recessions are

associated with jobless or wageless recoveries and others are not. In particular, I investi-

gate whether recently developed (and popular) structural models of the U.S. economy can

generate labor market dynamics similar to those seen in the data. To explore the economic

and labor market effects of various exogenous shocks I examine structural impulse response

functions (IRF’s) for series that are usually not inside DSGE models. Many of these IRF’s

are only obtainable if embedded in a dynamic factor model with little or no theoretical in-

terpretation of the original shock by which they are generated. However, the DSGE-DFM

estimation technique creates a structural foundation of what type of initial shock has created

the disturbance.

After estimating both models in a data-rich environment, I calibrate the SWFF model to

ensure that all shocks decrease real GDP by the same amount. I find evidence that financial

shocks (corresponding to an increased spread between the risk and risk-free interest rates

inside the model) are associated with higher levels of unemployment and longer average
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unemployment duration in comparison to responses to other types of shocks with identical

output decreases. These results suggest that the relationship between unemployment and

GDP growth implied by Okun’s Law might be state-dependent. I also find that sectors

associated with more capital intensive operations (manufacturing and construction sectors)

are the very sectors that are slowest to recover from a financial shock. Labor market series

are not the only series where such a pattern exists, decreases in real investment, residential

investment, exports and new orders are larger and last longer in response to negative financial

shocks when compared to negative consumer, monetary, or supply shocks.

Finally, I closely examine the period surrounding the Great Recession and its recovery.

I conduct simulations and forecasts for 2008Q3, 2008Q4 and 2009Q1 of both DSGE-DFM

models. I find that the SWFF-DFM model was able to foresee the decrease in the number

of overall jobs, number of jobs in the manufacturing and construction sectors and the rise

in the unemployment rate. In comparison to the SW-DFM model, the SWFF-DFM model

was able to predict these declines earlier and more accurately. These results suggest that the

SWFF model estimated in a data-rich environment would have predicted the labor market

dynamics associated with the Great Recession and its proceeding recovery. I also find that

many of the in-sample forecasts of such variables do not differ from each other in tranquil

economic times. It is only in times of financial volatility that I see the simulated paths from

the two models begin to differ. These results extend to core macroeconomic variables as well,

I find that the dynamics associated with GDP and consumption growth during the recovery

can also be predicted best by the SWFF DSGE-DFM model.

The results of the paper are consistent with other empirical work that suggests that

sluggish labor market recoveries may be directly linked to what initiated the preceding

recession. In particular, Boeri et al. (2012) used firm-level balance sheets and employment

records and found that firms in industries that use more temporary financing in every-

day business operations adjust employment levels much more when credit shocks decrease

liquidity than firms with less financing on their balance sheet. This liquidity channel leads to

larger job loses and slower hiring when a decrease in economic output is caused by a financial

shock rather than a demand or supply shock. A result that is also found by Chodorow-Reich

(2013) and Duygan-Bump et al. (2015) using firm-level data.
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The relationship of job destructions and liquidity is not only found at the firm-level but

is also seen at the aggregate labor market level. Calvo et al. (2012) studied economic data

from thirty-five emerging and advanced economies and found that the unemployment rate

rose higher and remained higher for longer periods of time in recessions caused by financial

shocks when compared to recessions caused by productivity shocks. Calvo et al. (2012) also

examined wage dynamics and found that financial recessions can be associated with either

jobless recoveries or “wageless” recoveries depending on the level of inflation observed in

the economy during the recovery period. Schmitt-Grohe et al. (2017) finds that negative

demand and financial shocks that push the economy to the zero lower bound further slow

down recoveries and that employment growth can remain low even as productivity and

output growth returns to their long-run levels.

In addition to these papers, my paper also fits into the structural DSGE literature of labor

market dynamics around the Great Recession. Gali et al. (2012), Christiano et al. (2015),

Christiano et al. (2016) incorporate a more advanced labor market in their perspective

DSGE models than either the SW or SWFF model. The models of Gali et al. (2012) and

Christiano et al. (2015) are able to simulate and/or forecast the dynamics of employment,

unemployment and other aggregate labor market statistics quite nicely as does the SWFF-

DFM model of this paper. However, the SWFF-DFM model is able to also capture the labor

market and output dynamics of less aggregate statistics, such as employment and production

by sector.

The remainder of this paper is structured as follows. Section 2 explains each agent of

the economy and the linearized equations for both models needed to replicate the results

of this paper. Section 3 outlines the estimation technique used to incorporate the large set

of economic and financial series including the adaptive Metropolis-within-Gibbs algorithm

used in estimating both models in the data-rich environment. Also included in this section

is a description of the priors for the state-space and structural parameters as well as an

overview of the data series and how they were collected, transformed, and grouped. Section

4 discusses the dynamics of the SWFF-DFM model including estimated IRF’s for different

“types” of normalized output declines induced by the various structural shocks inside the

SWFF model. Section 5 shows the simulated paths of both the SW-DFM and SWFF-DFM
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models for various labor, output and finance series around the trough and recovery of the

Great Recession. Section 6 concludes and discusses future extensions.

2 The DSGE Models

I consider two DSGE models in this paper, the first model is based on the FRBNY model

outlined by Del Negro et al. (2013). This model is an extension of the Smets and Wouters

(2003, 2007) New Keynesian model with the addition of a credit market with frictions that

closely follows the financial accelerator model created by Bernanke, Gertler and Gilchrist

(1999). It incorporates many of the features of Christiano, Motto and Rostagno (2010).

The second model has no credit channel and closely follows the Smets and Wouters (2003)

model. This model will be referred to as SW while the model with financial frictions will

be referred to as SWFF. In this section, I first outline the agents in the SWFF model and I

present the linearized equations of the model around the steady state that I use to produce

my results. Finally, I introduce the components of the SW model that differ from the SWFF

model, as well as any linearized equations that change as a result of how the SW model is

microfounded.

2.1 General Outline of SWFF Model

The model involves a number of exogenous shocks, economic agents, and market frictions.

The agents include households, intermediate and wholesale firms, banks, entrepreneurs, cap-

ital producers, employment agencies, and government agencies.

Households supply household-specific labor to employment agencies. Households max-

imize a CRRA utility function over an infinite horizon with additively separable utility in

consumption, leisure and money. Utility from consumption has habit persistence as it is

realized by a relative measure of total consumption in the last time period. Labor is differ-

entiated over households, and is not perfectly competitive implying households hold some

monopoly power over wages. The model includes sticky nominal wages set in a Calvo (1983)

manner with wage indexation to those who can not freely optimize their wage. In addi-

tion to holding money, households can save in Government bonds and/or deposits in banks.
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Households are subject to an exogenous preference shock that can be viewed as a shock in

the consumer’s consumption and saving decisions.

Employment Agencies package and sell labor bought from the household to intermediate-

firms. Employment agencies are perfectly competitive but must buy specialized labor from

households who hold some monopoly power over wages. Households and Employment Agen-

cies may only renegotiate wages with a certain probability but are subject to inflation in-

dexation. Employment agencies are subject to wage mark-up shocks that capture exogenous

changes in the monopolistic power households hold over their specialized labor.

Firms come in two forms, intermediate good producing firms and final good producing

firms. There is a continuum of intermediate good firms, who supply intermediate goods

in a monopolistically competitive market. Intermediate firms produce differentiated goods,

decide on labor and capital inputs, and set prices in a Calvo-like manner. As with wages,

those firms unable to change their prices, are able to partially index them to past inflation

rates. Intermediate firms face two exogenous shocks, the first is a productivity shock that

affects their production ability and the second is a price mark-up shock. The price mark-up

shock captures the degree of competitiveness in the intermediate goods market. Final goods

use intermediate goods in production and are produced in perfect competition. The final

good is sold to the households and capital producers in the form of consumption.

Capital Producers buy consumption output from the final goods sector and transform

it into new capital. The creation of new capital (Investment) requires both the newly bought

consumption output and the previous stock of capital in the economy which they buy from

entrepreneurs. The investment procedure is subject to convex adjustment costs making

it more expensive to produce more capital in times of large investment growth. Capital

producers are subject to investment shocks that affect the marginal efficiency of investment

as in Justiniano et al. (2011).

Financial Sector centers around two economic agents, banks and entrepreneurs. En-

trepreneurs enter the period with some level of net worth. They must use their net worth

and an agreed upon loan from the bank to buy capital from the capital producers. Once

the capital is bought they are affected by an idiosyncratic risk shock that can decrease or

increase their overall level of capital just purchased. The entrepreneur must then decide the
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utilization of the new level of capital and rent it out to intermediate firms to be used in

their production process. Once the capital has been used in the production process the non-

depreciated capital is purchased by the capital producers. If entrepreneurs received enough

revenue they pay back the agreed upon loan with interest to the bank. If entrepreneurs do

not have enough revenue a proportion of their revenue is seized by the bank. Banks incor-

porate the risk of default by charging entrepreneurs an interest rate higher than the deposit

rate payed to households.

Government Agencies are comprised of a monetary authority and a fiscal authority.

The short term nominal interest rate is determined by the monetary authority, which is

assumed to follow a generalized Taylor Rule and is subject to monetary policy shocks. The

monetary authority supplies the corresponding money demanded by the household to support

the targeted nominal interest rate. The fiscal authority sets government spending and collects

lump sum taxes. It is subject to exogenous government spending shocks.

2.2 Log Linear Equations

The model is linearized around the non-stochastic steady state and then solved using

the Sims (2002) method. This solution is the transition equation in the state-space set-up

of Section 3. Variables denoted with a hat are defined as log deviations around the steady

state.
(
Ŷt = log

(
Yt

Y

))
Variables denoted without a time script are steady state values. In all,

the model is reduced to 12 equations and eight exogenous shocks all of which are listed in

this subsection.

Physical capital K̄t accumulates according to:

ˆ̄Kt = (1− τ) ˆ̄Kt−1 + τ Ît + τ(1 + β)S ′′ε̂It (2.1)

where εIt is an AR(1) investment shock and τ is the depreciation rate and S ′′ is a parameter

that governs investment adjustment costs. A large S ′′ implies that adjusting an investment

schedule is costly.
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Labor Demand is given by

L̂t = −ŵt + (1 + 1
ψ

)r̂kt + ˆ̄Kt−1 (2.2)

where rkt is the real rental rate of capital and ψ is a parameter that captures utilization costs

of capital. A large ψ infers that capital utilization costs are high. The economy’s resource

constraint and production function take the form:

Ŷt = CyĈt + Iy Ît +
rkk̄y
ψ

r̂kt +Mt + ε̂Gt (2.3)

Ŷt = φε̂at + φα ˆ̄Kt−1 +
φα

ψ
r̂kt + φ(1− α)L̂t (2.4)

where Cy and Iy are the steady state ratio of consumption and investment to output and

M is the monitoring costs faced by banks. M is assumed to be negligible and is left out in

the estimation process. φ resembles a fixed cost of production and is assumed to be greater

than 1.

The Linearized Taylor Equation that determines the nominal interest rate is

R̂t = ρR̂t−1 + (1− ρ)
[
rπ1 π̂t + ry1Ŷt + rπ2 π̂t−1 + ry2Ŷt−1

]
+ ε̂rt (2.5)

The consumption and investment transition equations are

Ĉt =
h

1 + h
Ĉt−1 +

1

1 + h
Et[Ĉt+1]−

1− h
(1 + h)σc

(
R̂t − Et[π̂t+1]

)
+ ε̂bt (2.6)

Ît =
1

1 + β
Ît−1 +

β

1 + β
Et[Ît+1] +

1

(1 + β)S ′′
q̂t + ε̂It (2.7)

where ε̂It and ε̂bt are exogenous stochastic stationary processes that effect the short term

dynamics of consumption and investment. qt is the relative price of capital and β is the

discount rate.
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The entrepreneurial return on capital is characterized by

ˆ̃Rk
t − π̂t =

1− τ
1− τ + rk

q̂t +
rk

1− τ + rk
r̂kt − q̂t−1 (2.8)

The model yields a phillips curve equal to:

π̂t =
β

1 + βιp
Et[π̂t+1] +

ιp
1 + βιp

π̂t−1 +
(1− βξp)(1− ξp)

(1 + βιp)ξp

(
αr̂kt + (1− α)ŵt − ε̂at

)
+ ε̂pt

(2.9)

where ξp is the degree of price stickiness, ιp is the degree of price indexation to last period’s

inflation rate and ε̂at , ε̂
p
t are exogenous processes that affect the productivity of production

and the price mark up over marginal cost respectively.

Wages in the economy evolve according to:

ŵt =
β

1 + β
Et[ŵt+1] +

1

1 + β
ŵt−1 +

β

1 + β
Et[π̂t+1]−

1 + βιw
1 + β

π̂t +
ιw

1 + β
π̂t−1

− (1− βξw)(1− ξw)

(1 + β)
(

1 + νl
1+λw
λw

)
ξw

(
ŵt − νlL̂t −

σc
1− h

(Ĉt − hĈt−1)
)

+ ε̂wt
(2.10)

where ξw is the degree of wage stickiness, ιw is the degree of wage indexation to last period’s

inflation rate and ε̂wt , is an exogenous process that affect monopoly power households hold

over labor.

The finance market is characterized by two equations, the first being the spread of the

return on capital over the risk free rate:

Ŝt ≡ Et

[
ˆ̃Rk
t+1 − R̂t

]
= χ

(
q̂t + ˆ̄Kt − n̂t

)
+ ε̂Ft (2.11)

where χ is the elasticity of the spread with respect to the capital to net worth ratio and ε̂Ft

is a finance shock that effects the riskiness of entrepreneurs and thus the riskiness of banks

being paid back in full.
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The second financial equation contains the evolutional behavior of entrepreneur net

worth:

n̂t = δR̃k( ˆ̃Rk
t − π̂t)− δR(R̂t−1 − π̂t) + δqK(q̂t−1 + ˆ̄Kt−1) + δnn̂t−1 − δσε̂Ft−1 (2.12)

where the δ coefficients are functions of the steady state values of the loan default rate,

entrepreneur survival rate, the steady state variance of the entrepreneurial risk shocks, the

steady state level of revenue lost in bankruptcy, and the steady state ratio of capital to net

worth. The value of χ, which will be estimated, will determine the steady state level of the

variance of the exogenous risk shock, the steady state value of the percentage of revenue lost

in bankruptcy and the steady state level of leverage. Therefore, the value of χ will determine

the values of the δ coefficients.1

In all, the SWFF model has eight exogenous shocks, seven of which are AR(1) processes

the lone exception being the monetary policy shock which is simply white noise. All processes

are assumed to be i.i.d. with mean zero and standard deviation σi and autocorrelation

parameters ρi, where i = {a, b,G, r, I, F, p, w}

2.3 SW Model

The SW model is identical to the SWFF model without the entrepreneur and banking

sectors. Instead households own the capital, decide the utilization rate of capital, rent it

to intermediate firms and sell it to capital producers. As a result the household budget

constraint includes income received by renting and selling capital. In addition, households

must choose how much capital to own.

The linearized first order condition of capital is given by

q̂t = −(R̂t − Et[π̂t+1]) +
1− τ

1− τ + rk
Et[q̂t+1] +

rk

1− τ + rk
Et[r̂

k
t+1] + ε̂Qt (2.13)

This equation will replace the linearized equation (2.8). Since the equations (2.11) and (2.12)

1For a comprehensive look at the functional forms of all the δ coefficients used in coding
the model, one must look at the working appendix of Del Negro and Schorfheide available at
http://economics.sas.upenn.edu/ schorf/research.htm.
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do not exist in the SW model there is a loss of an exogenous shock. In order to be able

to directly compare misspecification error of the two models it is best that both models

have the same amount of exogenous shocks. This is accomplished by adding a idiosyncratic

equity premium price shock represented by ε̂Qt to replace the finance shock ε̂Ft of the SWFF

Model. Equation (2.13) is nested in the SWFF model if there exists no finance spread (i.e

ˆ̃Rk
t+1 = Rt). This assumption implies (2.8) forwarded ahead one period is identical to (2.13).

3 Estimation Technique

This section presents the steps needed to generate Bayesian estimates of the parameters

of the linearized models of the previous section. For the Bayesian estimation, I adopt two

techniques, the first being the standard Random Walk Metropolis-Hasting algorithm whose

results will be referred to as SW-Reg and SWFF-Reg for the respective models. The second is

a data-rich estimation method proposed by Boivin and Giannoni (2006) whose results will be

referred to as SW-DFM and SWFF-DFM for the respective models. The Kalman filter is used

to construct the likelihood of the models in both estimation techniques. Following Boivin

and Giannoni (2006) and Kryshko (2011), I outline the steps of the Adaptive Metropolis-

within-Gibbs algorithm used to estimate the SW-DFM and SWFF-DFM models. Next the

priors for the models’ parameters are shown and lastly, the data-set and its transformations

are outlined in the final subsection.

3.1 Regular DSGE Estimation

The state space representation of the solved model consists of a transition equation, which

is calculated by solving the linearized system of the given model one wishes to evaluate for

a given set of structural model parameters (θ):

St = G(θ)St−1 +H(θ)vt where vt ∼ NID(0, I) (3.1)

and the measurement equation:

Xreg
t = ΛSt (3.2)
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Here Xreg
t are the economic data sets and Λ is a matrix matching the observed data to the

definitions of the model’s state variables St. The matrices G(θ) and H(θ) are functions of

the model’s structural parameters and vt is a vector of the i.i.d. components of the model’s

exogenous processes ε̂t.

The description of the data sets and individual elements of Λ for the regular estimation

technique can be found in Appendix A. With the model set up in state-space form and all

stochastic processes being distributed normally and independently the Kalman Filter is used

to calculate the likelihood function. Using the given priors found in Section 3.3, a Random-

Walk Metropolis-Hastings2 algorithm is then used to obtain the posterior distribution of the

model’s parameters P (θ|Xreg).

3.2 DSGE-DFM Estimation

Bayesian estimation of a DSGE model in a data rich environment incorporates the state

space model discussed above with a few modifications. The assumption that all relevant

information for the estimation is summarized by a relatively small number of data sets needs

to be met in order for accurate estimates and forecasts to be obtained when a DSGE model

is estimated as described in Section 3.1. However, the development of Dynamic Factor

Models proposed by Sargent and Sims (1977) and further advanced by the works of Stock

and Watson (1989, 2003, 2005, 2009) have shown that large data sets can hold valuable

information in identifying unobserved common factors of the economy.

Further, the abundance of data series that can stand in as a measurable metric of a

particular economic variable can be large as well, for example, inflation can be measured in

multiple data sets including CPI, PCE, GDP deflator and other series. The econometrician’s

choice of which data set(s) to use in the estimation process can have an impact on the results

as shown by Guerron-Quintana (2010).

The state space set up for DSGE-DFM estimation is characterized by equations (3.3)-

(3.5).

2For more detail on Bayesian DSGE estimation techniques please see An and Schorfheide (2007)

13



St = G(θ)St−1 +H(θ)vt where vt ∼ NID(0, Im) (3.3)

Xt = ΛSt + et (3.4)

et = Ψet−1 + εt where εt ∼ NID(0, R) (3.5)

Here et follows an AR(1) process and is often referred to as measurement error. The matrix

X is J x T where J is the number of data series used in estimation and T is the number

of observables for each series. The Matrix Λ is now no longer assumed to be known by the

econometrician, but instead is estimated within the MCMC routine. The matrices Ψ and R

that govern the measurement error’s stationary processes for each series are assumed to be

diagonal and are also estimated within the MCMC routine.

The measurement equation (3.4) has the following structure:



Output#1

Output#2

Inflation#1

Inflation#2
...

−−−−−−

[Housing Market]

[Labor Market]

[Output Components]

[Financial Market]

[Investment]

[Price/Wage Indexes]

[Other]



=



1 0 ... 0

λY1 0 ... 0

0 1 ... 0

0 λπ2 ... 0

−− −−−− −−− −−

[λH1 ] [λH2 ] ... [λHn ]

[λL1 ] [λL2 ] ... [λLn ]
...

... ...
...




Ŷt

π̂t
...

εft

+
[
et

]

where Xt is partitioned into core series and non-core series separated by the dashed line.

The core series are series that are only allowed to load on one particular variable of the

state vector St to which there is a known sole relationship between series and state. (For
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instance, GDP to Y ) Further, the factor loading coefficient for the first series of each core

variable that corresponds to a particular known state is assumed to be perfectly tight, this

is represented by the 1’s in the Λ matrix. This anchors the estimated states of the DSGE

model and ensures that they don’t drift too far away from their theoretical foundation.

The non-core series consist of the remaining 97 data sets not in the core series and are

grouped into eight subgroups. These series are allowed to ’load’ on all time t states in the

state vector. Non-core series may have up to n (where n is the number of elements in St)

non-zero elements for their corresponding row in Λ unlike the core series whose corresponding

row in Λ may only have one non-zero element.

Following the work of Boivin and Giannoni (2006) and Kryshko (2011) a Metropolis-

within-Gibbs algorithm is used to estimate the state space parameters Γ = [Λ, Ψ, R] and

the structural DSGE parameters θ. The likelihood functions of the DSGE-DFM models

apear to have many peaks and cliffs that can cause the MCMC algorithm to get “stuck”

in places. To make sure the algorithm explores the entirety of the parameter space, I have

implemented an adaptive element into the Metropolis step of the algorithm along the lines of

Roberts and Rosenthal’s (2009) adaptive within Gibbs example. The adaptive Metropolis-

within-Gibbs algorithm used follows the following steps:

1. Specify Initial values of θ(0), and Γ(0), Γ = {Λ, Ψ, R}

2. Repeat for g=1...G

2.1 Solve the DSGE model numerically and obtain G(θ(g−1)) and H(θ(g−1))

2.2 Draw from p(Γ|G(θ(g−1)), H(θ(g−1));X1:T )

2.2.1 Generate unobserved states S1:T,(g) from p(ST |Γ(g−1), G(θ(g−1)), H(θ(g−1));X1:T )

using the Carter-Kohn forward-backward algorithm

2.2.2 Generate state-space parameters Γ(g) from p(Γ|S1:T,(g);X1:T ) by drawing from

a set of known conditional densities [R|Λ,Ψ;S1:T,(g)], [Λ|R,Ψ;S1:T,(g)], [Ψ|Λ, R;S1:T,(g)].

2.3 Draw DSGE parameters θ(g) from p(θ|Γ;X1:T ) using adaptive Metropolis Hastings

2.3.1 Propose θ∗ = θ(g−1) + c̄ ε` where ε` ∼ NID(0,Σ−1)

2.3.2 Calculate P (X1:T |θ∗,Γ(g)) using the Kalman Filter
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2.3.3 Calculate the acceptance probability ω

ω = min

{
P (X1:T |θ∗,Γ(g))P (θ∗)

P (X1:T |θ(g−1),Γ(g))P (θ(g−1))
, 1

}

2.3.4 θ(g) = θ∗ with probability ω and θ(g) = θ(g−1) with probability (1− ω)

2.4 Calculate acceptance rate of proposed θ for 1 to g draws. If the acceptance rate is

lower than target acceptance rate decrease c̄ by w (iff c̄ > w), if acceptance rate is

greater than target acceptance rate increase c̄ by w. This target acceptance rate

adaption can be implemented every n iterations of g. In addition the condition

w → 0 as g →∞ must be satisfied

3. Return {θ(g), Γ(g)}Gg=1

A few comments are in order. First, regarding step 2.2 which is the Gibbs portion of the

algorithm. This step uses the Carter-Kohn (1994) algorithm which first requires a forward

pass of the Kalman filter to collect the generated states, S, and their corresponding cov/var

matrices, P . The backward pass of the algorithm then smooths out the estimated states

using both S and P from the forward pass.3 Step 2.2.2 then performs line-by-line OLS for

each series in X given the generated states S1:T . With the use of the proper conjugate priors

the distributions of step 2.2.2 are known using the approach of Chib and Greenberg (1994).

The algorithm must first be initialized with θ(0), Γ(0) and Σ. The values of θ(0) are

retrieved by taking the mean of P (θ|Xreg) when estimated as described in Section 3.1. Once

θ(0) is obtained it is then used to calculate S1:T,(0). The estimated states are then used to

run line-by-line OLS for each series in X to back out initial values of Γ(0). Σ−1 is the inverse

Hessian of the DSGE model evaluated at its posterior mode under regular estimation.

The applied algorithm is based on 500,000 draws (2 parallel chains of 250,000 draws

discarding the initial burn-in period of 100,000 iterations). The calibrations regarding the

adaptive step include the acceptance target rate which is set at 27%, an initial c̄ which is set

3The backwards pass draws states S using a cov/var matrix that is a transformation of the P matrix. It
is necessary that P be a symmetric and positive semi-definite matrix. However, it is sometimes necessary to
computationally transform the P matrix using the procedure outlined by Rebonato (1999)
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to .1, the adaptive jump size w which is set at .0054 and an adjustment rate n which is set

at 25. The adjustment rate n determines how many iterations take place between changing

c̄ as described in step 2.4.

3.3 Data and Parameter Priors

To estimate both the SW and SWFF models in a data-rich environment a total of 97

quarterly5 data series are used. These series cover the time period of 1984Q2 to 2008Q3.

The complete set of series encompasses many of the economic and financial series used by

Stock and Watson (2009) and Kryshko (2011). The evaluation window of the data series is

significant for multiple reasons. First, Kim and Nelson (1999) have argued that a structural

break in economic growth volatility occurred in 1984Q1. Clarida et al. (2000) have shown

that the stability of monetary policy of the form of equation (2.5) did not occur until the

early 1980’s. Further, Lubik and Schorfheide (2004) assert that it was not until the early

1980’s that monetary policy of this form was consistent with a determinate equilibrium.

Finally, 2008Q3 was the last quarter before nominal interest rates hit the zero lower bound.

The SWFF-DFM (SW-DFM) estimation consist of 17 (15) core series and 80 (82) non-

core series. The core series for both models include three measures each of GDP, inflation,

employment and nominal interest rates. Also included in the core series are real consumption

and investment expenditures and hourly wages. In addition, the core series for the SWFF-

DFM model include 2 measures of the interest rate spread. The series that hold a perfectly

tight loading factor are the 8 (7) series used in regular estimation of each model. These

include real per capita GDP, the GDP price deflator, per capita real consumption and

private investment expenditures, real average hourly wage, hours worked, the annualized

federal funds rate and the quarterly spread between BAA corporate bond yields to the 10

year Treasury bond yield. All per capita variables are calculated using the adult population

of 16 years and older. These series are either demeaned, linearly detrended log level or log

first differenced and demeaned6. A complete list and transformation rubric of each core

4In order to accord with the condition of step 2.4, w = min
(
.005,

(
g
n

)−.5
)

5A 3-month average is used to obtain quarterly data from monthly series

6This is to account for no intercept vector in the measurement equation
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series along with their corresponding Fred-II database code is found in Appendix A.

The non-core series are grouped into eight categories. The first being Output Components

which include series that explain deviations from per capita linear trends of different GDP

and production output components. The Labor Market category includes employment by

sector as well as unemployment rates and durations. The Housing Market group includes

regional housing starts and the residential investment series. The Financial Market classi-

fication includes a number of different interest rates, loan and credit quantities and asset

prices. The Exchange Rate group includes exchange rates of the US dollar to other foreign

currencies. The Investment grouping includes inventory indexes and other investment series.

The Price and Wage category includes a number of pricing indicies, wage indicies and com-

modity prices. The final category Other includes money supply measures and consumer and

producer sentiment surveys.

As is common in the Dynamic Factor Model literature, all non-core series sample standard

deviation is normalized to 1. In addition, these series are either demeaned, linearly detrended

log level or log first differenced and demeaned. A complete list and transformation rubric

of each non-core series along with their corresponding Fred-II database code is found in

Appendix A.

The structural parameter marginal priors are in accordance to the Smets and Wouters

(2003, 2007) priors. The parameter priors include normal, beta, gamma, and inverse gamma

distributions. All coefficients whose values lie within the unit interval are drawn from beta

distributions, while all standard deviations of the structural shocks are drawn from inverse

gamma distributions. The priors on the autocorrelation coefficients of the structural shock

ensure that shocks will be persistent in the model economy. The joint prior is given by the

products of the marginals and is truncated to parameter values that guarantee a determinate

and unique model equilibrium. The distribution of the prior along with its mean, standard

deviation and description of the parameter are laid out in Table 1.

In addition, some structural parameters are fixed including the discount rate, share of

capital, depreciation rate, and the steady state share of government and investment to total

output. The latter parameters being calibrated to the average proportion of investment

and government purchases of GDP over the sample period. In the SWFF model the steady
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Table 1: Priors for DSGE Models’ Parameters

Description Distribution Mean Std

Structural Parameters
ψ Capital utilization costs Beta 0.2 0.08
ιp Degree of indexation on prices Beta 0.5 0.15
ιw Degree of indexation on wages Beta 0.5 0.15
ξp Calvo price stickiness Beta 0.6 0.05
ξw Calvo wage stickiness Beta 0.6 0.05
νl CRRA coef. on labor Gamma 1.4 0.45
σc CRRA coef. on consumption Gamma 1.2 0.45
h Habit consumption Beta 0.7 0.1
φ Fixed cost of production Gamma 0.5 0.3
S′′ Capital adjustment cost Normal 5 1

Policy Parameters
rπ1 Taylor Rule coef. on inflation Gamma 2 0.33
ry1 Taylor Rule coef. on output gap Gamma 0.2 0.1
rπ2 Taylor Rule coef. on past inflation Normal -0.3 0.1
ry2 Taylor Rule coef. on past output gap Normal -0.06 0.05
ρ Lagged interest rate in Taylor Rule Beta 0.7 0.1

Exogenous Processes Parameters
ρa AR(1) coef. on productivity shock Beta 0.8 0.1
ρb AR(1) coef. on preference shock Beta 0.8 0.1
ρG AR(1) coef. on gov’t spending shock Beta 0.8 0.1
ρI AR(1) coef. on investment shock Beta 0.8 0.1
ρw AR(1) coef. on wage mark-up shock Beta 0.5 0.1
ρp AR(1) coef. on price mark-up shock Beta 0.5 0.1
σa Std. of productivity shock Inv. Gamma 0.1 2*
σb Std. of preference shock Inv. Gamma 0.1 2*
σG Std. of gov’t spending shock Inv. Gamma 0.1 2*
σr Std. of monetary policy shock Inv. Gamma 0.1 2*
σI Std. of investment shock Inv. Gamma 0.1 2*
σp Std. of price mark-up shock Inv. Gamma 0.1 2*
σw Std. of wage mark-up shock Inv. Gamma 0.1 2*
σq Std. of equity premium shock Inv. Gamma 0.1 2*

Parameters Specific to SWFF
χ∗ Spread Elasticity Beta 0.05 0.005
ρF AR(1) coef. on finance shock Beta 0.8 0.1
σF Std. of finance shock Inv. Gamma 0.1 2*

Note: the auxiliary parameter χ is estimated with χ∗ = .0225 + .0825χ

Note: All inverse gamma distributions list degrees of freedom instead of std.
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state default rate is set to .0075 which corresponds to Bernanke, Gertler, Gilchrist (1999)

annualized default rate of 3%. The quarterly survival rate of entrepreneurs is fixed at .99

which corresponds to an average entrepreneur life of 68 quarters or 17 years. The steady state

spread is calibrated to 140 basis points which is roughly the sample median spread between

the BAA corporate bond yield and 10 year Treasury bond. yield. This value is in line with

the estimated values of Del Negro et al. (2013) who estimated the steady state spread to be

between 73 and 150 basis points. A complete list of calibrated structural parameters can be

found in Table 2.

Table 2: Calibrated Parameters

Description Value
β Discount rate 0.99
α Share of capital 0.3
τ Depreciation rate 0.025
Iy S.S investment proportion of output 0.18
gy S.S government proportion of output 0.19
λw Degree of wage markup 0.3
Specific to SWFF
γ Survival rate of entrepreneur 0.99
F ∗ Loan default rate 0.0075
S S.S. Spread (Annual %) 1.4

The priors for the state space parameters include the elements of Λ and the diagonal

elements of Ψ and R. First, the elements of Λ can be separated between core and non-

core elements. Core series may only have a single non-zero row element of Λ whose prior

is normally distributed and centered around 17. Each non-core series corresponding row

elements8 of Λ has a multivariate normal prior centered around zero.

The prior for each ith row of the non-core series follows the work of Boivin and Giannoni

(2006) and Kryshko (2011), who use a Normal-Inverse-Gamma prior distribution for (Λi, Ri,i)

so that Ri,i ∼ IG2(.001, 3) and the prior mean of factor loadings for the ith row is given by

Λi|Ri,i ∼ N(0, Ri,iI) where the mean is a vector of zeros and I is the identity matrix. The

7The core interest rate series priors are centered around 4 since the interest rates are in annualized
percentage

8The elements of Λ that correspond to t− 1 states of the St vector are assumed to be zero
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prior for the ith measurement equation’s autocorrelation parameter, Ψi,i is N(0, 1) for all

rows. The autocorrelation parameter prior is truncated to values inside the unit circle to

ensure all error processes are stationary.

Priors regarding the core series is still Normal-Inverse-Gamma but instead the mean of the

factor loadings of the ith row of Λ is centered at the DSGE models implied theoretical loading.

As discussed earlier the first data set of each core series category has a perfectly tight loading

prior. The priors for Ψ and R whose diagonal elements correspond to core series remains

the same. In the spirit of Boivin and Giannoni (2006) who fix the measurement equation of

the federal funds rate error term to be zero and Kryshko (2011) who fixes all Taylor Rule

policy parameters to be equal to the means of the posterior distributions estimated in the

regular environment, I truncate R13,13 which correspond to the federal funds rate error term

to be no greater than 0.05. This assures that the nominal interest rate of the DSGE model

will not drift far away from the federal funds rate observed in the economy.

Table 3: Priors for DSGE-DFM Γ Parameters

Description Distribution Mean Std

Γ Parameters
Ψi,i AR(1) coef. of misspecification error Normal 0 1
Ri,i Variance of misspecification error Inv. Gamma 0.001 3*
Λi,j Factor loadings of Non-core data sets Normal 0 Ri,iI
Λi,j Factor loadings of Core data sets Normal 1 Ri,iI

4 Dynamics of the SWFF-DFM Model

In this section, I illustrate some of the key economic mechanisms at work in SWFF-DFM

model. I do so with the aid of impulse response functions. The posterior estimates for the

structural parameters for the SWFF-Reg and SWFF-DFM models are tabulated in Table 4.

I save discussion of these parameter estimates until Section 5.1.
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4.1 Estimated State Variables

Before looking at the dynamics generated by shocks inside the SWFF-DFM model lets

first look at the in-sample dynamics of the model to ensure that our SWFF-DFM model is

consistent (in terms of the conduct of macroeconomic series) with the in-sample dynamics

of the SWFF-Reg model. Using the Carter-Kohn algorithm which is applied in the DSGE-

DFM estimation algorithm it is straightforward to calculate the estimates of the endogenous

and exogenous variables of the model over the sample time period. These are plotted for

the SWFF model in Figures 1 to 3. The blue line and shaded area represent the posterior

mean and 90% density interval of the variable under SWFF-DFM estimation and the red

line and shaded area represent the posterior mean and 90% density interval of the variable

under SWFF-Reg estimation. The y-axis of all plots is representing percentage deviations

away from the variables steady state values.

Figure 1: Simulated States of Endogenous Variables of SWFF
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The eight plots of Figure 1 represent endogenous variables that are directly related to

a data series in the core.9 Recall, one of the series has a perfectly tight loading prior to

ensure that the variable is “anchored” to its economic definition. As the plots show this is

indeed the case, with the first eight endogenous variables within the same neighborhood of

the SWFF-Reg endogenous variable estimations.

The five plots of Figure 2 and the eight plots of Figure 3 correspond to variables not

directly linked to a particular class of economic variable. As a result, the percent deviations

from steady state of the time plots of these variables exhibit noteworthy differences between

the estimation techniques. These variables are where the large data set can most easily

load and generate dynamic state factors to help explain the large set of data while still

possessing the theoretical structure inside the DSGE model. Also of note is that these

variables exhibit smoother and smaller posterior density intervals when estimated in the

data-rich environment.

Figure 2: Simulated States of Latent Endogenous Variables of SWFF

9Since, there is assumed to be no measurement/misspecification error in the SWFF-Reg estimation there
is no posterior density interval around the first eight endogenous variables as they are assumed to be measured
without error.
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Figure 3: Simulated States of Exogenous Processes of SWFF

4.2 Impulse Response Functions

DSGE-DFM estimation allows for economic series not directly corresponding to any

endogenous variables in the DSGE model to be related to the model’s exogenous shocks.

This allows IRF’s to be generated for many economic series whose IRF’s do not exist outside

of structural VAR estimation. This can also act as a rudimentary diagnostic tool of how well

the DSGE model is identified and specified. For example, if it is found that many of the price

indexes included in the data set fall when there is a positive price shock it would tend to

suggest an identification problem. Figures 4 to 7 represent such IRF’s for the SWFF-DFM

model and are discussed in this subsection.
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Figure 4 gives the IRF’s and 80% posterior density band of a one unit negative finance

shock (positive spread shock). The red IRF’s correspond to the same one unit finance shock

but are only available for series used in DSGE-Reg estimation. Although all shocks are

unitary the estimated standard deviation for the shock can differ. The IRF’s shows that the

finance shock lowers Real GDP and increases the spread as the finance accelerator would

predict. Notice that the impact on the spread is smaller in the SWFF-DFM model but its

impact is larger on Real GDP when compared to the SWFF-Reg model. This is due to

the higher estimate of the spread elasticity in the financial accelerator in the SWFF-DFM

model. In addition, the unemployment rate increases and peaks about 7 quarters after the

shock and results in a longer average unemployment duration in the future. The adverse

finance shock results in the decrease of manufacturing employees captured by the 5th plot

of the diagram and commercial loans begin to fall a few quarters after the finance shock. As

the SWFF model theoretically predicts, a finance shock increases entrepreneurial risk and

investment loan quantities decrease inside the SWFF model.

Figure 4: IRF’s of Negative Finance Shock

Figure 5 gives the IRF’s of a negative productivity shock in the economy. It depicts that

Real GDP and Industrial Production Indexes all fall and are hump shaped with a trough

around 6-8 quarters. Capacity Utilization in the manufacturing sector falls and output per
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hour of all persons falls as well. This is of particular note as it is the closest data series I

have that could be thought of as a measurable for labor productivity.

Figure 5: IRF’s of Negative Productivity Shock

The next set of IRF’s plot a negative investment shock in Figure 6. As expected real

investment falls in both the SWFF-Reg model and SWFF-DFM model. However, the degree

to which they fall and how fast they recover is quite substantial. This is due to the smaller

estimates of the average size of an investment shock in the SWFF-DFM model. There is also a

decrease in non-residential investment, business inventories and new orders. The pro-cyclical

relationship seen in the data between real wages and real GDP remains consistent inside the

model. Inventories initially decrease, but as the economy begins to recover, inventories begin

to exceed their long-run averages about 8-12 quarters after the investment shock.
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Figure 6: IRF’s of Negative Investment Shock

The final set of IRF’s are plotted in Figure 7 and are associated with a negative preference

shock (negative consumption shock). The IRF’s show a downturn in real GDP, real personal

consumption and consumption expenditures on non-durables. Such a shock corresponds to

a decrease in employees in the retail sector and a decrease in outstanding consumer credit.

Interestingly, the negative preference shock also corresponds to a decrease in the University

of Michigan’s Consumer Expectations Survey.

Figure 7: IRF’s of Negative Preference Shock
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4.3 Comparing the Economic Effects of Normalized Structural

Shocks

The DSGE-DFM framework can help in answering questions like: what makes financial

recessions and subsequent recoveries so much different than other recessions and recoveries? I

attempt to evaluate such a question by comparing the IRF’s of different normalized structural

shocks. All the negative structural shocks discussed in the previous subsection decrease

output. A closer examination of related macroeconomic series show that these structural

shocks are theory-consistent with series directly linked inside the model and series indirectly

linked to the model. The SWFF-DFM model displays that the greatest and most persistent

decreases in output are associated with negative financial and productivity shocks. Yet, these

shocks and their resulting dynamics do not account for different magnitudes of decrease in

output between the different shocks. In order to trace the dynamic effects of the structural

shocks to additional data indicators I must normalize the structural shocks to assure that

output falls by a similar magnitude across the menu of structural shocks.

To conduct this application, I calibrate all parameters including the loading coefficients

of the SWFF-DFM model to their estimated posterior median and normalize the size of the

eight structural shocks to ensure that the maximum decrease of real output is equal across

the different shocks.10 This assures any differences in the fluctuations of other variables or

series are not due to an output level effect. Figures 8 and 9 examines the IRF’s of each

structural shock for nine different economic series. Since the paper is mainly focused on

financially driven recessions, I highlight the IRF’s equated to the financial shock by the

thick green line in Figure 8 and 9. Further, unlike the financial shocks seen in 2008, none of

these negative shocks create a deep enough decline in output to force the model below the

zero lower bound.

Figure 8 plots the IRF’s of real GDP, Investment, Exports and Residential Investment.

Notice that by design real GDP decreases by the same amount for each of the structural

shocks. However, notice that this decrease in GDP is quickest after negative monetary and

10The decrease of real output is normalized around the decrease associated with a two standard deviation
financial spread shock.
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consumer shocks, as recovery starts 4-5 quarters after the shock. Recoveries after negative

investment and financial shocks start 5-6 quarters after the shock, while recoveries after

negative supply shocks (productivity and wage shocks) have more persistence, as they do

not begin until 7 or 8 quarters after the initial shock. I also see that particular components

of GDP react much differently to what has caused the decline in output. Real Investment

and real Exports decrease by a much larger amount and are slower to recover to their

steady state value after a financial shock. The decreases in both is similar to that of a

negative investment productivity shock but recover at a much slower pace. Recovery for real

Residential Investment remains extremely sluggish after a negative financial shock compared

to any other type of shock.

Figure 8: Comparing Normalized IRF’s

When I study the IRF’s for different labor market measures, including the unemploy-

ment rate and average unemployment duration time, I observe that the effect on both differ
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Figure 9: Comparing Normalized IRF’s

depending on what mechanism is behind the output decline. Since the decrease in real GDP

is identical, the different unemployment rate dynamics would suggest that the coefficient on

Okun’s Law is different depending on what the driving force behind the decrease in output

is. The unemployment rate increase is largest after negative investment and financial shocks,
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but the inertia associated with financial shocks is much greater, as the unemployment rate

and the average duration of unemployment remains high for much longer when compared to

any other type of shock.

If I examine the labor market in closer detail it sheds light on why this phenomenon of

a high and persistent unemployment rate may occur. I see that the decrease in inventories

and real investment are largest and most persistence after a financial shock. As a result the

number of employees in manufacturing and construction decreases most significantly after

financial shocks, while the decreases of service providing and retail trade jobs after a financial

shock are more consistent with those seen after monetary, consumption and investment

shocks. This supports the findings of Boeri et al. (2012) as firms in the capital intensive

manufacturing and construction sectors rely heaviest on financial markets to operate their

businesses.

In summary, I see that financial recessions have the potential to create prolonged slug-

gish recoveries and cause the unemployment rate and average duration of unemployment to

remain high for a significant time period after the financial shock. A closer look at particular

economic series suggests that sectors most likely associated with capital financing (manufac-

turing and construction) are the sectors that are slowest to recover and sectors less reliant

on capital financing (retail trade and service providers) show little to no distinction between

financial shocks and other demand and supply shocks.

5 Simulations and Forecasts

Del Negro and Schorfheide (2012) have found that the SWFF-Reg model significantly

“outperformed” the SW-Reg model in regards of identifying and forecasting the output and

inflation dynamics associated with the lead-up to the Great Recession and its recovery. In

this section I perform a similar exercise of comparing the simulated and forecasting ability

of the SW-Reg, SW-DFM and SWFF-DFM models; but instead of just focusing on output

and inflation, I pay particular attention to series related to the labor and finance markets.

Of course, many of these series can only be forecasted using the SWFF-DFM and SW-DFM

models that were estimated in a data-rich environment.
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In particular, I take the estimated posterior distributions of the models’ structural pa-

rameters and loading coefficients of the Λ matrix and create simulated paths for the different

time series for both models. I estimate the models at three different time periods, one at

which all data related from 1984Q2 to 2008Q3 is available to the econometrician, one at

which the econometrician can see quarterly data related to 2008Q4 and one in which they

have 2009Q1 data values available to them. The models’ posterior parameters are not re-

estimated when the new data are revealed, instead the new values are inserted into the

Kalman filter and are used as the new starting points for each of the simulations.

In total each forecast is generated by 500,000 simulations, 5,000 draws from the posterior

parameter distribution and each parameter draw is simulated using 100 draws of future

structural shocks for 16 quarters. In all simulations the zero lower bound is protected using

shadow monetary policy shocks using an algorithm outlined by Holden and Paetz (2012).

Before looking at forecasts for macro-finance variables not inside the DSGE models, I first

compare the growth forecasts of the SWFF-Reg (green), SW-DFM (red) and SWFF-DFM

(blue) for real Output, Consumption and Investment against actual realized growth for these

three series (black). Figures 10 and 11 show the median forecast as well as the 68% forecast

posterior density intervals for the three expenditure series at three different staring times.

Figure 10: Forecasts for Quarter to Quarter Real GDP and Consumption Growth

2008Q3 2008Q4 2009Q1
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Of note, both the DSGE-DFM models outperform the DSGE-Reg models in terms of

forecast accuracy for real GDP and real Consumption growth around the Great Recession

and its recovery. In addition, the SWFF-DFM model can foresee the magnitude of the Great

Recession starting in 2008Q3 and foresee the sluggish growth in consumption throughout the

next three years. It does overstate the decline in real GDP in the year 2009, however this

may be due to the models inability to capture the unconventional fiscal and monetary policy

that took place over this time period. Further, notice the overly optimistic SWFF-Reg model

which predicts a quick and robust recovery.

Figure 11 shows the median forecast for real Investment at three different staring times.

With regards to this variable none of the three models can foresee the depths of decline in

Investment although both DSGE-DFM models predict multiple quarters of negative invest-

ment growth starting in 2008Q3. However, once the depth of the decline in Investment had

been realized the SWFF-Reg model does the best job in predicting the dynamics of the real

Investment recovery.

Figure 11: Forecasted Paths for Quarter to Quarter Real Investment Growth

2008Q3 2008Q4 2009Q1

Let’s now look at the forecasted paths of some labor market metrics including the un-

employment rate, average weekly hours and average real hourly wages. The SWFF-DFM

forecasted paths are in blue and the SW-DFM forecasted paths are in red, while the actual

series values are shown in black. All forecasts have been transformed into actual levels. The

forecasted paths of all of these series can be found in Figure 12. Notice that the SWFF-DFM

model is able to pick up the upcoming increase of the unemployment rate as early as the

fall of 2008. In contrast the SW-DFM does not forecast an unemployment rate above 9%

until after the 1st quarter of 2009. There is more forecast overlap between the models for
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average weekly hours and average hourly wages, yet the SWFF-DFM model is still better

at picking up the initial decrease in weekly hours. The stagnation of real hourly wages over

the first few years after the Great Recession is not projected by either model, however, the

SWFF-DFM model does predict a lower real wage when compared to the SW-DFM model.

Figure 12: Forecasted Paths for Labor Market Metrics

2008Q3 2008Q4 2009Q1

When I examine the number of overall employees in the economy and the number of

employees by sector in Figures 13 and 14 I find a similar story. The model with a modeled

finance market (SWFF-DFM) does an impressive job of forecasting the sector employment

declines. In addition, the SWFF-DFM model significantly out forecasts the SW-DFM model

that does not have a modeled financial market inside its DSGE structure when it comes

to overall employees and employees in the professional services, retail trade, construction,
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manufacturing and wholesale trade sectors. Although the SWFF-DFM model constantly

outperforms the SW-DFM model in predicting the future paths of all of these series it is still

overly optimistic about the number of jobs in the economy 3-4 years into the future. This

may be a result of workforce demographic changes seen around the country. Under their

current construction the models have no ability to see such a demographic change as they

use the population of 16 years and older (not prime-working age population) to transform

variables in per capita terms.

Figure 13: Forecasted Paths for Labor Market Sectors

2008Q3 2008Q4 2009Q1
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Figure 14: Forecasted Paths for Labor Market Sectors

2008Q3 2008Q4 2009Q1

Figure 15 shows the forecasted paths of housing starts, consumer credit outstanding

and business loans. Once again I see that the SWFF-DFM model soundly outperforms

the SW-DFM model when it comes to housing starts. As far as consumer and business

loans, the SWFF-DFM model is a good predictor of both for the first 4-6 quarters of each

forecast. However, the SWFF-DFM model is unable to forecast the significant increases in

both consumer and business loans that starts in the middle of 2010. One possible explanation

for the increase in both could be QE2, which started in August 2010. Of course neither model

has a mechanism to incorporate such a policy change.
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Figure 15: Forecasted Paths for Financial Metrics

2008Q3 2008Q4 2009Q1

In summary, the SWFF-DFM model is able to see the decrease in jobs and the increase

in the unemployment rate starting in 2008Q3. Additionally the SWFF-DFM model foresees

the slower rate of overall jobs and jobs in particular sectors. I see that there is significant

difference in the forecasted paths between the two models for the 2008-2013 time period.

Yet this is not always the case for previous time periods, if I examine periods in which the

financial spread was low and financial volatility was also low the forecasted paths between the

models share similar posterior density intervals as can be seen in Figure 18 of the appendix.

This would suggest that in addition to real output the SWFF model is better at identifying

the dynamics of the labor and finance markets in times of high financial volatility.
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5.1 Mechanisms Behind the Results

It is important observe some characteristics and trends across the estimation techniques

by examining Figure 16 and Table 4, to better understand why the SWFF-DFM model was

able to foresee the output and labor dynamics associated with the Great Recession more

accurately and quicker than the SWFF-Reg, SW-Reg and SW-DFM models. Figure 16

plots the posterior distributions when fitted to a normal distribution for a select number of

structural parameters for the SWFF model. A few observations emerge. First, the price

and wage Calvo estimates share little to no overlap between the estimation techniques. The

average length of contract negotiation for prices and wages is six quarters under the DSGE-

Reg estimation compared to about every three quarters in the DSGE-DFM estimation. These

smaller, yet still significant, price and wage rigidities are more in line with the findings of

Klenow and Kryvtsov (2008) who examined monthly price changes by industry and found

that the mean price duration is about 7 months. The parameter that governs habit formation

consumption substantially increases in the DSGE-DFM estimation for both the SW and

SWFF models when compared to its estimate under DSGE-Reg estimation. This helps

explain why the SWFF-DFM model is able to forecast the sluggish growth in consumption

during the recovery shown in Figure 10.

Taylor Rule policy parameters are found to be more responsive to lagged inflation and

the lagged output gap when estimated in the data-rich environment implying more inertia

and persistence in the model. The policy parameters regarding the contemporaneous output

gap and inflation levels are estimated to be less responsive in the data-rich environment.

Many of the parameters linked to the exogenous shocks of the model remain similar

across the estimation techniques of the SWFF model. However, price and wage mark-up

shocks are estimated to be much more persistent in the SWFF-DFM estimation technique.

The presence of many other price and wage indexes, including oil prices, drive this result as

different inflation dynamics are needed to encapsulate many of them.

The parameters that preside over the financial accelerator also change when estimated

in a data-rich environment. There is more inertia in the financial accelerator as the spread

elasticity is found to be larger and the finance shock is found to be smaller but much more
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Figure 16: Posterior Distribution Estimates of Structural Parameters in SWFF
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persistence. The extra estimated persistence in nearly all structural shocks in the SWFF-

DFM coupled with its modeled financial market can explain why the SWFF-DFM was able

anticipate the slow recovery in GDP, consumption and sector employment after large negative

financial, investment and productivity shocks seen in 2008.

Figure 17 compares the forecasts of All Employees around the Great Recession under

different estimation concepts. The top row of plots, forecasts of All Employees using the

DSGE-DFM approach discussed throughout the paper. The second row of plots, forecasts

All Employees using the DSGE-Reg method and regressing historical employment data with

the estimated states of the DSGE-Reg models.11 I refer to models estimated in this fashion as

DSGE-OLS. I find that simply estimating the structural parameters of the DSGE model using

only core macroeconomic variables and then regressing the estimated states on employment

data does not provide an accurate forecast of All Employees. This highlights that utilizing

the large set of macro-finance data series in the estimation of the structural parameters inside

the DSGE model can generate more accurate forecasts of core and non-core macroeconomic

data series.

The third and fourth row of plots in Figure 17 underscore the importance of certain types

of data. Both are DSGE-DFM models estimated using the approach discussed throughout

the paper, however, row three does not include the series grouped in the Output Components

category in the Xt data matrix and row four does not include the series grouped in the

Price and Wages Indexes category in the Xt data matrix. The absence of either of these

series significantly undermines the improvement seen in forecasting All Employees for the

SWFF-DFM model when it is estimated using all the data series shown in the Appendix A.

Without multiple Output and Price indicators the SWFF-DFM model is unable to generate

the additional shock persistence needed to resemble the dynamics of the Great Recession as

is the case when these output and price indicators are included in the Xt data matrix. I

find similar patterns when I look at the forecasts of housing starts, business loans, consumer

loans and employment by sector.

11Recall this is how the DSGE-DFM algorithm outlined in Section 3.2 is initialized.
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Figure 17: Forecasts for All Employees Under Different Estimation Concepts

2008Q3 2008Q4 2009Q1

6 Conclusion

In this paper, the Smets and Wouters (2003, 2007) New Keynesian Dynamic Stochastic

General Equilibrium (DSGE) model augmented with a financial accelerator (SWFF) is es-

timated using a large set of economic and financial series following the work of Boivin and

Giannoni (2006) and Kryshko (2011). To explore the economic and labor market effects of
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various exogenous shocks, I examine structural impulse response functions (IRF’s) for series

that are usually not obtainable inside DSGE models or only obtainable if embedded in a dy-

namic factor model with little or no theoretical interpretation of the original shock that they

are generated by. However, the Boivin and Giannoni estimation technique (DSGE-DFM)

creates a structural foundation of what type of initial shock has created the disturbance. An

examination at calibrated IRF’s suggests that financial shocks have very different effects on

the labor, finance and investment markets when compared to their structural counter-parts

of monetary, consumer, government and supply shocks. Most notably, manufacturing and

construction sectors are the very sectors that are slowest to recover from a financial shock.

Further, the decreases in real investment, residential investment, exports and new orders are

larger and last longer after negative financial shocks.

I also find that identical decreases of GDP generated by different structural shocks of

the SWFF model creates different magnitudes in the change of the overall unemployment

rate. These results suggest that the relationship between unemployment and GDP growth

implied by Okun’s Law may be state-dependent.

Comparing the original Smets and Wouters (2003, 2007) model (SW) and SWFF DSGE-

DFM models, I find that the SWFF-DFM model is better in capturing the dynamics of many

economic series including output, consumption and many labor market metrics around the

time of the Great Recession and its ensuing recovery. This result suggests that a structural

DSGE model embedded with a modeled financial market and estimated in a data-rich envi-

ronment would have predicted the output and labor market severity of the Great recession

and its aftermath as early as the summer of 2008. Finally, I believe the continuing ad-

vancements in computational programming and the ever growing number of macroeconomic

and financial series available allows DSGE-DFM estimation to be a bountiful area of future

research.
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Kryshko	Shorthand FRED	Code Trans*Long	Description Used	in	Reg	Estimation

Core	Output
1 RGDP GDPC1 2 Real	GDP ✳

2 IP_TOTAL INDPRO 2 Industrial	Production	Index:total
3 RGDI A261RX1Q020SBEA 2 Real	Domestic	Income

Core	Inflation
4 PGDP GDPDEF 3 GDP	Price	deflator ✳

5 PCED PCECTPI 3 PCE_ALL	Price	deflator
6 CPI_ALL CPIAUCSL 3 CPI_ALL	Price	index

Core	Consumption
7 RCONS PCECC96 2 Real	Personal	Consumption	Expenditures ✳

Core	Investment
8 RINV GDPI 2 Real	Private	Domestic	Investment ✳

Core	Wages
9 RWAGE AHETPI 4 Real	Average	Hourly	wages:production:total	private ✳

Core	Labor	Employment
10 HOURS HOANBS 2 Hours	Worked ✳

11 EMP_CES PAYEMS+USGOVT 2 Employees:Total	Nonfarm
12 EMP_CPS CE160V 2 Civilian	Labor	Force:Employed,	Total

Core	Interest	Rate
13 FedFunds FEDFUNDS 0 Federal	Funds	Rate	(effective) ✳

14 Tbill_3m TB3MS 0 Interest	Rate	U.S.	Treasury	bill	3	month
15 AAABond AAA 0 Bond	Yield:	Moody's	AAA	corporate

Core	Spread*
16 SFYBAAC BAA-GS10 0 Spread	of	BAA	corporate	yield	to	10	year	Treasury ✳

17 SFYAAAC AAA-GS10 0 Spread	of	AAA	corporate	yield	to	10	year	Treasury

Output	Components
18 IP_FINAL IPS299 2 Industrial	Production	Index:final	products
19 IP_CONS_DBLE IPDCONGD 2 Industrial	Production	Index:Durable	Consumer	Goods
20 IP_CONS_NONDBLE IPNCONGD 2 Industrial	Production	Index:NonDurable	Consumer	Goods
21 IP_BUS_EQPT IPBUSEQ 2 Industrial	Production	Index:Business	Equipment
22 IP_DRBLE_MATS IPDMAT 2 Industrial	Production	Index:Durable	Goods	Materials
23 IP_NONDRBLE_MATS IPNMAT 2 Industrial	Production	Index:NonDurable	Goods	Materials
24 IP_MFG IPMAN 2 Industrial	Production	Index:Manufacturing
25 IP_FUELS IPUTIL 2 Industrial	Production	Index:Fuels
26 PMP NAPMPI 0 NAPM	Production	index
27 RCONS_DRBLE DDURRA3Q086SBEA 2 Real	Personal	Consumption	Expenditures	index:Durables
28 RCONS_NONDRBLE DNDGRA3Q086SBEA 2 Real	Personal	Consumption	Expenditures	index:NonDurables
29 RCONS_SERV DSERRA3Q086SBEA 2 Real	Personal	Consumption	Expenditures	index:Sevices
30 REXPORTS B020RA3Q086SBEA 2 Real	Exports	Quantity	Index
31 RIMPORTS B255RA3Q086SBEA 2 Real	Imports	Quantity	Index
32 RGOV B823RA3Q086SBEA 2 Real	Government	Consumption	&	Investment	Quantity	Index

Labor	Market
33 EMP_Mining USMINE 2 Employees:Mining	&	Logging
34 EMP_CONST USCONS 2 Employees:Construction
35 EMP_MFG MANEMP 2 Employees:Manufacturing
36 EMP_SERVICES SRVPRD 2 Employees:Service	Providing
37 EMP_TTU USTPU 2 Employees:Trade,	Transportation,	Utilities
38 EMP_WHOLESALE USWTRADE 2 Employees:Wholesale	Trade
39 EMP_RETAIL USTRADE 2 Employees:Retail	Trade
40 EMP_FIN USFIRE 2 Employees:Financial	Activities
41 EMP_GOVT USGOVT 2 Employees:Government
42 EMP_PROSERV USPBS 2 Employees:Professional	Services
43 EMP_LEISURE USLAH 2 Employees:Leisure	&	Hospitality
44 URATE UNRATE 0 Unemployment	Rate
45 U_DURATION UEMPMEAN 0 Average	Duration	of	Unemployment	(weeks)
46 U_L5WKS UEMPLT5 2 Unemployment	Duration:Persons:Less	than	5	Weeks
47 U_5_14WKS UEMP5TO14 2 Unemployment	Duration:Persons:5-14	Weeks
48 U_15_26WKS UEMP15T26 2 Unemployment	Duration:Persons:15-26

Core	Sets

Non-Core	Sets

A Appendix: Data and Transformations
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49 U_M27WKS UEMP27OV 2 Unemployment	Duration:Persons:27	weeks	+
50 HOURS_AVG CES0600000007 0 Average	Weekly	Hours:Goods	Producing	
51 HOURS_AVG_OT AWOTMAN 0 Average	Weekly	Overtime	Hours:Manufacturing

Housing	Market
52 HSTARTS_NE HOUSTNE 1 Housing	Starts:Northeast
53 HSTARTS_MW HOUSTMW 1 Housing	Starts:Midwest
54 HSTARTS_SOU HOUSTS 1 Housing	Starts:South
55 HSTARTS_WST HOUSTW 1 Housing	Starts:West
56 RRRESINV B011RA3Q086SBEA 2 Real	Private	Domestic	Investment:Residential	Quantity	Index

Financial	Market
57 SFYGM6 TB6MS-TB3MS 0 Spread	of	6	month	Tbill	to	3	month	Tbill
58 SFYGT1 GS1-TB3MS 0 Spread	of	1	year	Treasury	to	3	month	Tbill
59 SFYGT10 GS10-TB3MS 0 Spread	of	10	year	Treasury	to	3	month	Tbill
60 TOT_RES TOTRESNS 2 Total	Reserves	of	Depository	Institutions
61 TOT_RES_NB NONBORRES 5 Total	Reserves	Of	Depository	Institutions,	Nonborrowed
62 BUS_LOANS BUSLOANS 2 Commercial	and	Industrial	Loans	at	All	Commercial	Banks
63 CONS_CREDIT NONREVSL 2 Total	Nonrevolving	Credit	Owned	and	Securitized,	Outstanding
64 SP500 SP500 3 S&P	500	Stock	Price	Index
65 DJIA DJIA 3 Dow	Jones	Industrial	Average

Exchange	Rates
66 EXR_US TWEXMMTH 3 Trade	Weighted	U.S.	Dollar	Index:	Major	Currencies
67 EXR_SW EXSZUS 3 Switzerland	/	U.S.	Foreign	Exchange	Rate	
68 EXR_JAN EXJPUS 3 Japan	/	U.S.	Foreign	Exchange	Rate
69 EXR_UK EXUSUK 3 U.S.	/	U.K.	Foreign	Exchange	Rate
70 EXR_CAN EXCAUS 3 Canada	/	U.S.	Foreign	Exchange	Rate

Investment	
71 NAPMI NAPM 0 Purchasing	Managers	Index
72 NAPM_NEW_ORDERS NAPMNOI 0 NAPM	New	Orders	Index
73 NAPM_SUP_DEL MAPMSDI 0 NAPM	Supplier	Deliveries
74 NAPM_INVENTORIES NAPMII 0 NAPM	Inventories	Index
75 RNONRESINV B009RA3Q086SBEA 2 Real	private	fixed	investment:	Nonresidential	quantity	index

Price	&	Wage	Indexes
76 RAHE_CONST CES3000000008 4 Real	Avg.	Hourly	wages:construction	(Deflated	w/GDP	Deflator)
77 RAHE_MFG CES3000000008 4 Real	Avg.	Hourly	wages:manufacturing	(Deflated	w/GDP	Deflator)
78 RCOMP_HR COMPRNFB 4 Real	Compensation	Per	Hour	(index)
79 ULC ULCNFB 4 Unit	Labor	Cost	(index)
80 CPI_CORE CPILFESL 3 CPI:Less	food	and	energy
81 PCED_DUR DDURRA3Q086SBEA 3 PCE:Durable	goods	price	index
82 PCED_NDUR DNDGRA3Q086SBEA 3 PCE:NonDurable	goods	price	index
83 PCED_SERV DSERRG3Q086SBEA 3 PCE:Services	price	index
84 PINV_GDP GPDICTPI 3 Gross	private	domestic	investment	price	index
85 PINV_NRES_STRUCT B009RG3Q086SBEA 3 GPDI:price	index:structures
86 PINV_NRES_EQP B010RG3Q086SBEA 3 GPDI:price	index:Equiptment	and	software
87 PINV_RES B011RG3Q086SBEA 3 GPDI:price	index:Residential
88 PEXPORTS (B020RG3Q086SBEA 3 GDP:Exports	Price	Index
89 PIMPORTS B021RG3Q086SBEA 3 GDP:Imports	Price	Index
90 PGOV B822RG3Q086SBEA 3 Government	Consumption	and	gross	investment	price	index
91 P_COM PPIACO 3 PPI:All	commodities	price	index
92 P_OIL PPICEM/PCEPILFE 3 PPI:Crude	(Divided	by	PCE	Core)

Other
93 UTL11 MCUMFN 0 Capacity	Utilization-Manufacturing
94 LABOR_PROD OPHNFB 4 Output	per	hour	all	persons:business	sector	index
95 UMICH_CONS UMCSENT 1 University	of	Michigan	Consumer	Expectations
96 M_1 M1SL 2 M1	Money	stock
97 M_2 M2SL 2 M2	Money	stock

Note:	Since	there	is	no	Spread	variable	in	the	SW	Model,	data	set	16	is	not	used	in	the	SW-Reg	estimation	and	data	sets	16	and	17	are	moved	to	the	
Financial	Market	grouping	for	SW-DFM	estimation

*Transformation	codes	are	described	in	the	data	transformation	rubric



Data Transformation Rubric

Code Description
0 Demeaned
1 Log() and demeaned
2 Linear detrended Log() per capita
3 Log() differenced and demeaned
4 Detrended Log()
5 Detrended per capita level

Note: All per capita variables are calculated
using the adult population series. (CNP16OV)

Measurement Equations for Reg Estimation
The measurement equation (3.2) is specified as follows where the 8th row is omitted for the
SW model: 

RGDP
PGDP

RCONS
RINV

RWAGE
HOURS

FedFunds
SFYBAAC/4


=



1 0 0 0 0 0 0 0 . . . 0
0 1 0 0 0 0 0 0 . . . 0
0 0 1 0 0 0 0 0 . . . 0
0 0 0 1 0 0 0 0 . . . 0
0 0 0 0 1 0 0 0 . . . 0
0 0 0 0 0 1 0 0 . . . 0
0 0 0 0 0 0 4 0 . . . 0
0 0 0 0 0 0 0 1 . . . 0





yt
πt
ct
It
wt
Lt
Rt

St
...


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Table 4: Posterior Estimates of SWFF Model

Regular Estimation DSGE-DFM Estimation
Mean 5% 95% Mean 5% 95%

Structural Parameters
ψ 0.491 0.414 0.595 0.550 0.471 0.649
ιp 0.261 0.099 0.495 0.106 0.040 0.181
ιw 0.250 0.128 0.389 0.426 0.240 0.676
ξp 0.837 0.783 0.887 0.739 0.708 0.776
ξw 0.833 0.759 0.882 0.693 0.654 0.740
νl 1.782 1.127 2.545 1.244 0.785 1.849
σc 1.624 1.057 2.323 1.157 0.725 1.843
h 0.672 0.525 0.806 0.921 0.888 0.951
φ 0.467 0.219 0.760 0.176 0.052 0.380
S 2.716 1.471 4.138 3.267 3.074 3.394
χ 0.051 0.044 0.059 0.063 0.057 0.069

Policy Parameters
rπ1 2.196 1.832 2.602 1.539 1.397 1.706
ry1 0.336 0.235 0.443 0.131 0.070 0.209
rπ2 -0.216 -0.383 -0.056 -0.403 -0.536 -0.289
ry2 -0.103 -0.179 -0.024 -0.172 -0.252 -0.110
ρ 0.853 0.821 0.883 0.842 0.810 0.864

Exogenous Processes AR(1) Parameters
ρa 0.910 0.877 0.940 0.944 0.928 0.955
ρb 0.755 0.623 0.863 0.726 0.673 0.776
ρG 0.971 0.951 0.987 0.867 0.838 0.890
ρI 0.664 0.549 0.766 0.843 0.765 0.913
ρF 0.964 0.932 0.986 0.993 0.985 0.998
ρp 0.826 0.745 0.891 0.957 0.941 0.969
ρw 0.600 0.432 0.781 0.911 0.853 0.952

Exogenous Processes Standard Deviation Parameters
σa 0.487 0.431 0.550 0.428 0.343 0.500
σb 0.094 0.063 0.131 0.026 0.019 0.034
σG 0.327 0.290 0.372 0.230 0.179 0.289
σr 0.127 0.111 0.145 0.130 0.119 0.148
σI 0.955 0.801 1.129 0.241 0.192 0.308
σF 0.063 0.056 0.072 0.041 0.035 0.047
σp 0.061 0.047 0.078 0.066 0.052 0.081
σw 0.045 0.033 0.058 0.059 0.051 0.065
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Table 5: Posterior Estimates of SW Model

Regular Estimation DSGE-DFM Estimation
Mean 5% 95% Mean 5% 95%

Structural Parameters
ψ 0.345 0.208 0.497 0.284 0.155 0.442
ιp 0.261 0.102 0.493 0.229 0.093 0.411
ιw 0.223 0.108 0.356 0.442 0.210 0.672
ξp 0.838 0.787 0.885 0.689 0.609 0.766
ξw 0.853 0.804 0.888 0.756 0.634 0.828
νl 2.009 1.307 2.880 1.363 0.729 2.225
σc 1.678 1.115 2.316 1.233 0.710 1.922
h 0.688 0.552 0.816 0.910 0.852 0.954
φ 0.445 0.201 0.750 0.128 0.036 0.254
S 5.348 3.841 6.898 5.243 4.560 6.104

Policy Parameters
rπ1 2.161 1.775 2.556 2.107 1.744 2.498
ry1 0.345 0.238 0.460 0.206 0.116 0.291
rπ2 -0.222 -0.383 -0.063 -0.231 -0.383 -0.085
ry2 -0.084 -0.166 -0.005 -0.166 -0.238 -0.093
ρ 0.867 0.835 0.896 0.831 0.796 0.860

Exogenous Processes AR(1) Parameters
ρa 0.911 0.879 0.939 0.945 0.901 0.979
ρb 0.772 0.654 0.864 0.755 0.671 0.821
ρG 0.974 0.956 0.987 0.968 0.949 0.989
ρI 0.710 0.593 0.813 0.848 0.785 0.906
ρp 0.827 0.748 0.890 0.600 0.418 0.734
ρw 0.524 0.381 0.684 0.588 0.415 0.886

Exogenous Processes Standard Deviation Parameters
σa 0.500 0.442 0.567 0.209 0.155 0.277
σb 0.085 0.056 0.120 0.036 0.023 0.053
σG 0.322 0.287 0.362 0.292 0.217 0.353
σr 0.125 0.110 0.142 0.119 0.104 0.139
σI 0.737 0.603 0.881 0.263 0.214 0.317
σq 0.104 0.039 0.244 0.583 0.467 0.713
σp 0.061 0.047 0.078 0.098 0.075 0.125
σw 0.048 0.036 0.060 0.106 0.070 0.150
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Figure 18: Forecasted Paths of the Mid-1990’s
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